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ABSTRACT 
 

The Eulerian-Eulerian two-fluid model (EE) [1] is a powerful general model for multiphase flow 

computations. However, one limitation of the EE model is that it has no ability to estimate the local bubble 

sizes by itself. Thus, it must be complemented either by measurements of bubble size distribution or by 

additional models such as population balance theory or interfacial area concentration to get the local bubble 

size information. In this work, we have combined the Discrete Phase model (DPM) [2] to estimate the 

evolution of bubble sizes with the Eulerian-Eulerian model. In the DPM, the bubbles are tracked individually 

as point masses, and the change of bubble size distribution is estimated by additional coalescence and 

breakup modeling of the bubbles. The time-varying bubble distribution is used to compute the local interface 
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area between gas and liquid phase, which is then used to estimate the momentum interactions such as drag, 

lift, wall lubrication and turbulent dispersion forces for the EE model. In this work, this newly-developed 

hybrid model (EEDPM) is applied to compute an upward flowing bubbly flow in a vertical pipe and the results 

are compared with previous experimental work of Hibiki et al. [3]. The EEDPM model is able to reasonably 

predict the locally different bubble size distributions and the velocity and gas fraction fields. On the other 

hand, the standard EE model without the DPM shows good comparison with measurements only when the 

prescribed constant initial bubble size is accurate and does not change much. Parametric studies are 

implemented to understand the contributions of bubble interactions and volumetric expansion on the size 

change of bubbles quantitatively. The results show that pressure expansion is significant. However, 

coalescence is larger than other effects, and naturally increases in importance with increasing gas fraction.   

 

INTRODUCTION 
 

Analysis of multiphase flow systems has received great attention as a grand 

challenge problem in Computational Fluid Dynamics (CFD) due to its importance for a 

wide variety of industrial processes (cooling, energy generation, material processing, 

chemical reactions etc.). In spite of numerous studies to date, the modeling of liquid-gas 

systems is still difficult due to its complexity and lack of fundamental understanding. The 

Eulerian-Eulerian (EE) model has been demonstrated to provide some success in 

simulating practical multiphase flow problems. However, the accuracy of this model is 

limited by the absence of reliable models for interphase coupling. EE models require 

additional help from measurements or additional modeling of interfacial coupling such as 

bubble characteristics (size, shape and so on) to calculate momentum interactions. 
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The present paper specifically addresses multiphase flows in the bubbly and 

transition regime to slug flow. Here we have combined and improved a model for the 

bubbly flow regime within the Eulerian-Eulerian model. One of the uncertainties in 

bubbly-EE models is the bubble size distribution. Previous works show that there are 

several approaches to analyze the evolution of bubble size distribution. One of the most 

popular approaches, especially in the chemical engineering field, is Population Balance 

Theory (PBT) [4]. In this model, a transport equation is solved for the number density of 

bubbles for each bubble size in addition to solving the EE model, which consists of at least 

two sets of continuity and momentum equations. Coalescence and breakup effects are 

modeled as source terms in the number density transport equation as birth and death 

rates. Numerous works have been published to close these source terms. A difficulty of 

using PBT in practical industrial problems is the high computational cost as the number 

density transport equation is a complex integro-differential equation, and governing 

equations must be solved for several bubble sizes. Several other models have been 

developed alleviate this issue: 1) Multi-size group (MUSIG) models [5-6] reduce the 

number of tracked bubble sizes by predefining them as a discrete distribution at input, 2) 

Interfacial Area Concentration (IAC) models [7] express the bubble distribution as 

interface area of bubbles and tracks it by solving a transport equation for the interface 

area instead of the number density. A major limitation of the MUSIG model is predefining 

the range of discrete bubble sizes as bubble interactions are estimated only for the 

prefixed finite bubble sizes. Therefore, this model relies on intuition to determine the 

bubble size ranges, and the result is dependent on the choice. With IAC models, the 
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bubble size obtained from the IAC model is a locally averaged (Sauter-mean) bubble size. 

Hence, it is not possible to evaluate the bubble size distribution. Also, this model is 

difficult to apply for new fluids as it requires many empirical constants. 

In contrast with these Eulerian-based approaches, there are discrete approaches 

using Lagrangian point-particle tracking, called Discrete Phase Models (DPM) [8]. With 

DPM, each particle making up the discrete phase is tracked individually as a point mass 

using Newton’s equations of motion. Based on the interaction with a continuous phase, 

it is classified to be one-way coupled (only the continuous phase affects the discrete 

phase) or two-way coupled (both phases interact with each other). Recently, four-way 

coupled simulations have also been introduced by including particle-particle interactions 

such as collisions, coalescence and breakup [9]. This approach allows simulation of high 

gas volume fraction bubbly flows. A weakness of DPM is that a Lagrangian point-particle 

is not suitable to represent large bubbles (d>>x) such as Taylor bubbles or gas pockets 

formed by accumulation of bubbles in recirculation zones.  

Recently we have [10] combined a discrete approach for estimating the evolution 

of bubble sizes with a Eulerian-Eulerian model: the evolution of bubble size distribution 

is captured by DPM, and the bubble size information is used to calculate local momentum 

interactions in the EE model. In this paper, this model is applied in an upward-flowing 

bubbly flow in a vertical pipe and the results are validated against previous experimental 

work of Hibiki et al. (2001) [3]. 
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MODEL DESCRIPTION: GOVERNING EQUATIONS 
 

The current model solves the following equations for the liquid and gas phases. 

డ(ఈ೒ఘ೒)డ௧ + ߘ ∙ ൫ߙ௚ߩ௚࢛௚൯ = 0                                                 (1) 

డ(ఈ೗ఘ೗)డ௧ + ߘ ∙ (௟࢛௟ߩ௟ߙ) = 0                                                   (2) 

డ൫ఈ೒ఘ೒࢛೒൯డ௧ + ߘ ∙ ൫ߙ௚ߩ௚࢛௚࢛௚൯  = −ߙ௚݌ߘ + ߘ ∙ ௚࢛ߘ௚൫ߙ௚ߤ) + +  (௚்൯࢛ߘ ࢍ௚ߩ௚ߙ + ∑                  ௚                        (3)ࡲ

డ(ఈ೗ఘ೗࢛೗)డ௧ + ߘ ∙ ݌ߘ௟ߙ− =  (௟࢛௟࢛௟ߩ௟ߙ) + ߘ ∙ ௟࢛ߘ௟൫ߙ௟ߤ) + +  (௟்൯࢛ߘ ࢍ௟ߩ௟ߙ + ∑                  ௟                          (4)ࡲ

௚ߩ ௣ܸ ௗ࢜࢏ௗ௧ = ௖ܸ ∑ ࢍࡲ +                                   ஻                                                     (5)ࡲ

ௗ࢞࢏ௗ௧ = ∑                                  (6)                                                                 ࢏࢜ ௟ࡲ = − ∑ =  ௚ࡲ ஽ࡲ + ௅ࡲ + ௐࡲ + ்ࡲ + ௏ࡲ +  ௉                                            (7)ࡲ

 

As the name of the model suggests, the governing equations are composed of two parts: 

the EE model has two continuity equations (Eq. 1-2) and six momentum equations (Eq. 3-

4) for the two phases to calculate velocity and volume fraction fields of each phase and a 

shared pressure field. The DPM equations (Eq. 5-6) track each bubble as a point-mass and 

store its position, velocity and acceleration. The two models are run together as separate 

models in the same domain, but are coupled by calculating ∑  ௚ for the DPM bubblesࡲ

using the Eulerian liquid phase flow field. The DPM bubbles do not affect the liquid phase 
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field directly, but the DPM bubble size distribution influences the calculation of the EE 

model momentum interactions ∑ ∑ ௟ andࡲ  ௚ by transferring the DPM bubble sizes toࡲ

the EE model. Since this will change the liquid phase flow field in the end, this model is a 

semi-two-way coupled in one sense. It is important to decide which model is used for 

modeling momentum interaction terms (Eq. 7). Based on previous works [11,12], each 

force is modeled as follows. For calculating ∑  terms for the DPM equation (Eq. 5), the ࢍࡲ

gas phase velocity ࢛ࢍ is substituted to an individual bubble velocity ࢜࢏, and ߙ௚ becomes 

1 in these models.    

For the drag force in the DPM model, the Tomiyama drag model [13] is chosen. 

This model considers deformation of bubble shape by including the Eotvos number ݋ܧ in 

the drag coefficient calculation. Thus, it can be applied to a wide range of bubble shape 

regimes such as spherical, ellipsoidal and spherical caps. The drag law is given as 

஽ࡲ  = − ଷସ ஼ವௗ ࢍ࢛|௚ߙ௟ߩ − ࢍ൫࢛|࢒࢛ −  ൯                                         (8)࢒࢛

஽ܥ = max ൬min ൬ ଶସோ௘೛ ൫1 + 0.15ܴ݁௣଴.଺଼଻൯, ଻ଶோ௘೛൰ , ଷ଼ ா௢ா௢ାସ൰                          (9) 

where, 

݋ܧ = ௚൫ఘ೗ିఘ೒൯ௗమఙ  ,  ܴ݁௉ = ఘ೗ห࢛࢒࢛ିࢍหௗఓ೗                                         (10) 

 

The lift force is important for lateral migration of bubbles. It is known that bubbles 

migrate differentially depending on their size. Large bubbles have more chance to be 

deformed due to their smaller surface tension forces and the substantial deformation 
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changes the lift force direction. The Tomiyama lift model [14] captures this sign inversion 

of lift force at bubble diameter d=5.8mm based on the bubble shape through the Eotvos 

number.  

௅ࡲ   = ࢍ௚൫࢛ߙ௟ߩ௅ܥ− − ൯࢒࢛ × ߘ) × ௅ܥ (11)                                         (࢒࢛ = minሾ0.288 tanh(0.121ܴ݁௉) , ሿ(ᇱ݋ܧ)݂ ᇱ݋ܧ)                       ≤ 4)             

    = 4)                                            (ᇱ݋ܧ)݂ < ᇱ݋ܧ ≤ 10)   

  = −0.27                                            (10 < Eoᇱ)  (12) 

where, 

ᇱ݋ܧ = ௚൫ఘ೗ିఘ೒൯ௗ೓మఙ ,    ݀௛ = ݀(1 + (ᇱ݋ܧ)݂  ଴.଻ହ଻)భయ                           (13)݋ܧ0.163 = ᇱଷ݋ܧ0.00105 − ᇱଶ݋ܧ0.0159 − ᇱ݋ܧ0.0204 + 0.474          (14) 

 

However, Hibiki et al. (2001) [3] observed that this sign inversion happens when the 

bubble size becomes d=3.6mm, not d=5.8mm in a multi-bubble situation. In this study, 

this lift force model is modified to match this observation by shifting the Tomiyama lift 

coefficient, ܥ௅, as shown in Figure 1.   

A wall lubrication force [15] is introduced to account for hydrodynamic forces near 

the wall. Basically this force always pushes bubbles away from the wall so that bubbles 

are kept detached from the wall. For small bubbles, the wall lubrication force acts in 

opposite direction to the lift force: the balance between these lateral forces, i.e. lift and 

wall lubrication forces plays a key role in determining the radial gas fraction profile. 
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ࢃࡲ = ࢍ௚ห࢛ߙ௟ߩௐ௅ܥ −  (15)                                           ࢃ࢔หଶ࢒࢛

ௐ௅ܥ = ஼ೢௗଶ ቀ ଵ௬ೢ ଵ(஽ି௬ೢ)మቁ                                                     (16) 

௪ܥ = max ൬ ଻ோ௘೛భ.వ ,  ൰                                                 (17)݋ܧ0.0217

A turbulent dispersion force [16] is also included to consider a force from 

turbulent fluctuations. Berns et al. derived this force through the Favre average of drag 

force. Numerically, this force smoothes out the gas fraction field. 

 

࢒,ࢀࡲ = ࢍ,ࢀࡲ− = − ଷସ ஼ವௗ ࢍ࢛|௚ߙ − |࢒࢛ ఓ೟,೗ఙ೗೒ (ఇఈ೒ఈ೒ − ఇఈ೗ఈ೗ )                                  (18) 

 

The effect of bubbles on the turbulence of the liquid phase is modeled as a source 

term of turbulent viscosity [17]. 

 

௧,௟ߤ = ఓ,௟ܥ ௞೗మఌ೗ + ࢍ࢛|௚݀ߙ0.6 −  (19)                                              |࢒࢛

 

For transient forces, the virtual mass force ࡲ௏ and pressure gradient force ࡲ௉ are 

added [17-18]. The virtual mass force (Eq. 20) is an additional force required to accelerate 

the surrounding fluid when the bubble is accelerated. The pressure gradient force (Eq. 

21) arises when there is a nonuniform pressure distribution around the bubble. 

௏ࡲ = ஽௧࢒௟(஽࢛ߩ௚ߙ0.5 − ஽࢛ࢍ஽௧ )                                                 (20) 

௉ࡲ = ௟ߩ௚ߙ ஽࢛࢒஽௧                                                          (21) 
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 Most importantly, the buoyancy force for a DPM bubble is calculated as follows.  

஻ࡲ = ௚ߩ)ࢍ −  ௟)                                                          (22)ߩ

 
VOLUMETRIC EXPANSION 
 

Gas bubbles expand as they rise according to the surrounding liquid pressure field. 

To calculate the bubble size change due to liquid pressure changes, a cubic equation with 

respect to ݎ௡௘௪ (new bubble radius) is derived from the Young-Laplace equation and the 

ideal gas law: 

௟,௡௘௪݌ ቀௗ೙೐ೢଶ ቁଷ + ߪ2 ቀௗ೙೐ೢଶ ቁଶ − ௚,௢௟ௗ݌ ቀௗ೚೗೏ଶ ቁଷ = 0                       (23) 

By solving this equation in time for the size of each DPM bubble, the gas volume change 

from the liquid pressure change is taken into account.  

 

BUBBLE INTERACTION MODELING 

Existing models for bubble breakup and coalescence are mostly developed in the 

framework of Population Balance Theory (PBT). Since bubbles are expressed with an 

Eulerian description in PBT, a suitable adjustment is required to transform these theories 

to a Lagrangian framework for applying them to DPM bubbles. Through this process, the 

complex integro-differential equations in PBT are simplified to ordinary differential 
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equations and algebraic equations, which are more intuitive and computationally 

inexpensive. 

In the coalescence model, the collision frequency in PBT is easily handled from the 

calculation of distances between a pair of DPM bubbles. Here, only the distances between 

pairs located in the same computational cell are calculated to decrease the computational 

cost from ݊ଶ to ݊ (݊ = number of bubbles). Once the distance between the pair is smaller 

than the sum of the radii of two bubbles, the pair is counted as a collided pair. And then, 

the coalescence efficiency e is estimated through calculations of drainage time and 

contact time. According to Prince and Blanch, the drainage time (ݐௗ௥௔௜௡௔௚௘) for the liquid 

film that forms between the collided pair and the contact time (ݐ௖௢௡௧௔௖௧) of the pair are 

calculated as follows [19]:  

 ݁ = −) ݌ݔ݁ ௧೏ೝೌ೔೙ೌ೒೐௧೎೚೙೟ೌ೎೟ )                                                 (24) 

ௗ௥௔௜௡௔௚௘ݐ = ቂௗ೐೜య ఘ೗ଵଶ଼ఙ ቃ଴.ହ ln (௛೔௛೑)                                         (25) 

௖௢௡௧௔௖௧ݐ = (ௗ೐೜/ଶ)೐೜మయఌభయ                                                   (26) 

݀௘௤ = ଶଵ/ௗభାଵ/ௗమ                                                  (27)  

 

Coalescence efficiency e determines the probability of coalescence: if two bubbles merge, 

the coalesced bubble size and velocity are determined by mass and momentum 

conservation. Otherwise, the two bubbles bounce apart via an elastic collision. This is 
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reasonable assumption for small bubbles: strong surface tension makes bubbles behave 

as hard spheres. Our first trial with this approach caused over-estimation of coalescence 

since the contact time becomes too large due to low turbulent dissipation rate except 

near the wall. We could obtain a reasonable result with e = 10ିଶ. A more accurate model 

for coalescence efficiency is required in the future.  

For the breakup model, the works of Luo & Svendsen [20] and Wang et al. [21] are 

chosen. In Luo and Svendsen’s theory, a bubble breaks up when it meets an eddy that has 

smaller size than the bubble [22], but enough kinetic energy to create a new surface 

caused by breakup. To decide which eddy size hits a bubble, an eddy size is randomly 

determined in the range of ߣ௠௜௡ < ߣ <  .௠௔௫ based on the eddy size distribution functionߣ

In Luo and Svendsen’s work, the eddy size distribution is derived from the number density 

of eddy ݊ఒሶ ߣ݀ = ௖య(ଵିఈ೒)ఒర  : ߣ݀
 

(ߣ)ܨ = ݏ݂݁݅݀݀݁݋ ݕݐ݅ݏ݊݁݀ ݎܾ݁݉ݑ݊ ݈ܽݐ݋ݐߣ~௠௜௡ߣ ݁ݖ݅ݏ ݏℎܽ ݐℎܽݐ ݕ݂݀݀݁݋ ݕݐ݅ݏ݊݁݀ ݎܾ݁݉ݑ݊  

= ׬ ௡ഊሶ ௗఒഊഊ೘೔೙׬ ௡ഊሶ ௗఒഊ೘ೌೣഊ೘೔೙ =  ఒ೘ೌೣయ ఒ೘೔೙యఒ೘ೌೣయ ିఒ೘೔೙య ( ଵఒ య − ଵఒ య೘೔೙)                                    (28) 

௠௔௫ߣ = ஽଺ , ௠௜௡ߣ = 11.4 ×  (29)                                           ߟ 

 

Here, ߣ௠௔௫ and ߣ௠௜௡ stand for the maximum and minimum eddy sizes in the inertial 

subrange since the number density expression is derived under an assumption of isotropic 

turbulence in inertial subrange. Once an eddy size is determined randomly with the 
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cumulative probability density function (ߣ)ܨ, it is checked that the eddy size is smaller 

than the bubble diameter. If so, the range of diameter for a daughter bubble is calculated 

based on mass, force and energy balance criteria. For the mass balance criterion, it is 

based on common sense that the daughter bubble cannot be larger than the parent 

bubble. The energy balance criterion is obtained from the balance of eddy kinetic energy 

and surface creation energy as follows: 

 

௟ߩ ఒܸ ௨ഊమଶ ≥ ߪଵଶ݀ߨ + ߪଶଶ݀ߨ − ߪଶ ݀ߨ = ௙ܿ݀ߨଶߪ    or 

݀ଵ ≤ ඨఘ೗௏ഊೠഊమమ௖೑గఙ 
                                                              (30) 

 

Breakup happens when the eddy has enough kinetic energy so that the energy is 

enough to create new interface area for the daughter bubbles. Here, ݑఒ = (2.0)଴.ହ(ߣߝ)భయ 

[23, 24] is assumed. For the force balance criterion, balance between inertial force 

(dynamic pressure) and surface tension force (capillary pressure) is considered as follows: 

 

௟ߩ ௨ഊమଶ ≥ ఙௗభ  or  ఙఘ೗ೠഊమమ ≤ ݀ଵ                                             (31) 

 

Luo and Svendsen’s theory had only an energy criterion and it encountered an unphysical 

result such that tiny bubbles are created extensively compared to experiment since it 

does not have any restriction for the minimum bubble size. To improve this model, Wang 
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et al. (2003) [21] added the minimum bubble size from the force balance criterion above. 

By combining all three criteria, we get 

 

݀௠௜௡ ≤ ݀ଵ ≤ ݀௠௔௫  or   ఙఘ೗ೠഊమమ ≤ ݀ଵ ≤ ݉݅݊ (݀, ඨఘ೗௏ഊೠഊమమ௖೑గఙ 
)                     (32) 

 

Since the daughter bubble must satisfy all three criteria, the smaller upper bound is 

chosen for the maximum diameter among the energy and mass criteria. If the upper 

bound is greater than the lower bound, it means there is a daughter bubble size that 

satisfies all three criteria. Then, a bubble size is randomly picked in the diameter range 

with the uniform probability density function [25]. The diameter of another daughter 

bubble is then calculated after subtracting the first bubble volume from the parent bubble 

volume.       

 

NUMERICAL MODEL SETUP FOR BENCHMARK TEST PROBLEM 

Based on measurements by Hibiki et al (2001) [3], a  vertical acrylic resin pipe with 

50.8mm diameter (D) and 3.061m length test section is considered in this work as a test 

problem for the EEDPM model. This test section is chosen as the model domain (Z=0 is 

the domain inlet at the bottom, and Z=60.3D is the domain outlet at the top, which is 

assumed to be close to the outlet of the experimental system itself, so is set to 1atm 

pressure). Measurements of velocity of both phases, gas fraction and bubble size were 
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taken on two measurement planes, Z=6D and 53.5D. By assuming axisymmetric flow, a 

1/6th sector of a pipe is used for the 3D domain, using a 42,000 hexahedral mesh. Because 

the incompressible EE models cannot account for gas expansion and the corresponding 

increase in gas fraction and velocity with distance up the pipe, the inlet velocity and gas 

fraction are specified as constants to match the average experimental data at the outlet 

measurement plane from Hibiki et al. (2001).  Table 1 shows the inlet boundary conditions 

of the three cases modeled in this study. 

Cases 1 and 2 are typical bubbly flows, and case 3 is in a transition between a 

bubbly and a slug flow regime. DPM bubbles are injected at Z=6D, based on the measured 

bubble sizes at that plane with gas flow rates taken from measurements at Z=6D, and inlet 

pressure from the EE model. The injection point (ݎ,  on the cross-section of Z=6D is (ߠ

randomly determined for each bubble as follows: 

ݎ = ஽ଶ × √ܴ , θ = గଷ × ܴ                                             (33) 

where ܴ is a uniform probability density function that varies from 0 to 1. These 

distribution functions make a uniform distribution on a fan-shape cross-sectional area. 

Once the injection point is determined, the injected bubble size is determined by the 

radial bubble size distribution from measurement data (݀̅ଷଶ = ݀̅ଷଶ(ݎ)). Instead of using 

the Sauter-mean bubble size ݀̅ଷଶ from the measurement directly, a Rosin-Rammler size 

distribution is assumed for the injected bubble sizes.  

݀ = ݀̅ଷଶ × ቀln ቀ ଵଵିோቁቁభഃ                                         (34) 
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where ߜ = 4, ݀̅ଷଶ is from the measurement on Z=6D associated with the randomly 

determined radial injection point r, ܴ is a uniform probability density function that varies 

from 0 to 1. The pipe wall is assumed to be a smooth wall, and a no-slip boundary 

condition is used for the liquid while a free-slip boundary condition is used for the gas. A 

wall function for single phase turbulent flow is applied for the liquid at the pipe wall. For 

DPM bubbles, a reflection boundary condition is applied at the wall. Elastic collisions are 

assumed when the distance from the wall becomes smaller than the bubble radius. This 

boundary condition is important to estimate an accurate bubble size near the wall since 

the DPM model allows a bubble to approach the wall until its center hits the wall. Side 

faces of the 1/6th sector of the pipe are prescribed as symmetric boundary conditions. 

 For the EE model and the EE part of the EEDPM model outlet, constant pressure 

boundary condition (P = 1 atmosphere pressure) is assumed at the outlet of the doamin. 

For turbulence modeling, the SST ݇ − ߱ model is used, which transitions from ݇ −  in ߝ

the bulk to ݇ − ߱ near the wall through a blending function, as described elsewhere [10-

11]. A time step of 0.001 second is chosen, based on satisfying the CFL number condition. 

Radial Sauter mean bubble size distributions are calculated from vertically integrated 

DPM bubbles in five equally-divided zones in height and the transiently-updated radial 

bubble size distributions (d=d(r)) are used for the EE model momentum interaction 

calculation of each zone. Velocity, gas fraction and bubble size distribution on the Z=53.5D 

plane are compared to the measurements. The new hybrid model is implemented in the 

commercial software ANSYS-Fluent through new user-defined (UDF) subroutines. 
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EE MODEL RESULTS WITH TOMIYAMA LIFT FORCE 

First, the standard Eulerian-Eulerian model is used with a constant bubble size to 

simulate the three cases. The original Tomiyama lift force model is used to calculate the 

lift force [14]. Cases 1 and 2, in the bubbly flow regime, have nearly equal gas fractions, 

but case 2 has twice the Reynolds number of case 1 for both phases. The average bubble 

sizes measured on the measurement plane Z=53.5D are 2.6mm for case 1, and 3.0mm for 

case 2. It was observed in the experiments that small bubbles (d<3.6mm) moved toward 

the wall due to the lift force and caused peaks of gas fraction and bubble diameter at 

~2.5mm from the wall.  

Figure 2 shows velocity, gas fraction and local bubble size distribution profiles at 

Z=53.5D for case 1. We observe a reasonable agreement with the experiment data, 

because the local bubble sizes do not deviate much from the average prescribed input 

bubble size of 2.6mm used in the simulation.  

Figure 3 shows the same comparisons for case 2. These results under-estimate the 

velocities in the core region for both phases. The gas fraction peak near the wall is over-

estimated slightly. 

Figure 4 shows the same comparisons for case 3. The experiments observed that 

in case 3 the flow regime transitions from a bubbly flow to a slug flow. The big bubbles 

created by the coalescence process migrate toward the center of the pipe and cause a 

high gas fraction and large bubble sizes near the center. Due to the significant change of 

bubble size in the radial direction, the average bubble size of 4.0 mm cannot adjust the 

local bubble size properly. This causes a large deviation of the velocity magnitudes from 
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the measurements. The gas fraction profiles are completely different. The simulations 

show a wall-peak profile, but measurements show a core-peak profile. One reason for 

this disagreement is the lift force model. The Tomiyama lift force estimates a critical 

bubble size for the inversion of force direction as 5.8mm, so the lift force acts towards 

the wall for the 4.0mm bubbles.   

 

 EE MODEL RESULTS WITH MODIFIED LIFT FORCE 

To improve the lift force calculation, a modified lift force model is used to re-

compute case 3. Before doing that, the radially-varying bubble size distribution from the 

measurement at Z=53.5D is used everywhere along the pipe instead of a constant 

averaged bubble size of 4.0mm. Figure 5 shows the EE model results, with the original 

Tomiyama lift model. Even though the bubble size distribution is imposed to match the 

measurements, there is still great disagreement of the velocity and gas fraction profiles. 

On the other hand, the simulation results are improved when the modified lift 

model is used, as shown in Figure 6. Velocity profiles show reasonable agreement with 

the measurements, and the gas fraction correctly shows a core-peak profile. This result 

implies that modification of the lift force is necessary when there is a transition of flow 

regime from bubbly to slug flow in multi-bubble situations. Also, the EE model has 

potential to accurately simulate the transition regime when a proper bubble size 

distribution is provided. 

 

EEDPM model results 
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We next recomputed cases 2 and 3 using the new EEDPM model including changes 

to the bubble size due to coalescence, break up and volumetric expansion. These bubble 

sizes are then used to compute the interactions between the bubble and the liquid phase. 

Figure 7 and 8 show two snapshots of bubble distributions, illustrating two bubbles 

coalescing and another bubble breaking up into two bubbles.     

Figure 9 (left) shows the DPM bubble sizes at Z=53.5D for case 2. In spite of the 

low gas fraction, collisions between bubbles happened and the coalescence effect on the 

bubble size distribution was not negligible. Modeling of elastic bounce after non-

coalescing collisions is crucial to get a realistic bubble motion and spatial distribution of 

bubbles since the DPM model does not otherwise have a mechanism to avoid overlapping 

of bubbles. Unrealistic accumulation of DPM bubbles at the wall was observed due to the 

lift force if the elastic bounce effect is not included. A few breakups are observed near 

the wall, caused by the high turbulent dissipation rate which decreases the Sauter mean 

diameter near the wall.  

Figure 10 shows Sauter-mean diameters of DPM bubbles at several locations for 

case 2 and compares them with the measurements. The injected DPM bubbles at Z=6D 

plane increase in size due to both volumetric expansion and coalescence as they float 

upwards in the duct. It is seen that the Sauter-mean diameter of the DPM bubbles passing 

through Z=53.5D plane matches the measurements well. The Sauter mean diameter 

profile obtained from vertically integrating over the DPM bubbles in the zone including 

Z/D=53.5 shows a similar trend to the results at Z=53.5D but produces a slightly rough 
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bubble size distribution because it is a spatial average of bubbles in the zone at simulation 

time t=18 seconds. This radial bubble size distribution is transferred to the EE model for 

the calculation of momentum interactions at each time step at each zone.  

Figure 11 shows the velocity and gas fraction from the EEDPM model and 

compares them with the measurements. The newly-computed velocity fields agree better 

with the experiment and are higher near the center, but the gas fraction is over-estimated 

near the center, and under-estimated near the wall compared to the measurements and 

to the pure EE model results shown in Fig 3. This error in gas fraction is due to an under-

estimation of the lift coefficient by the modified lift force model. This suggests that a more 

sophisticated lift model is needed to simulate the effect of neighbor bubbles in the case 

of multiple bubbles.  

Figure 12 shows the distribution of Sauter-mean diameters of the EEDPM bubbles 

for case 3 at different axial locations compared with the measurements. As shown in 

Figure 9 (right), the bubble size increases significantly near the center of the pipe due to 

the coalescence effect. Large bubbles (d>3.6mm) migrate toward the center by the lift 

force and create even larger bubbles through coalescence. On the other hand, breakup 

of bubbles near the wall creates smaller bubbles and causes a decrease in Sauter mean 

bubble diameter. The Sauter mean diameters obtained by the DPM model at Z=53.5D 

matches well with the measurements. Figure 13 compares the velocity and gas fraction 

distributions with measurements. Compared to the results of the EE model presented in 

Figure 4, the EEDPM model shows a better agreement. 
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EVALUATION OF BUBBLE INTERACTION AND EXPANSION EFFECTS 
 

To understand the importance of different contributions to the size change of 

bubbles quantitatively, parametric studies of case 2 and 3 are conducted by numerically 

activating only some of the effects, which include bubble collisions, volumetric expansion, 

breakup, and coalescence. Table 2 lists the activated effects in each run. The collision 

effect is always activated to avoid the unphysical overlapping of DPM bubbles. 

Figure 14 and 15 show the comparison of these effects for case 2. It turned out 

that the coalescence effect is larger than the expansion effect in spite of the low gas 

fraction (α ≅ 6%), and both effects are not negligible. Increase of the Sauter mean 

diameter from Z=6D to Z=53.5D by coalescence was 13.1%, compared to 7.0% by 

expansion. The total average increase in diameter from Z=6D to Z=53.5D was 18.9%. 

Especially, the coalescence effect is important to capture the peak near r/R≅ 0.95. 

Decrease of the Sauter mean diameter by breakup averaged 2.8%. The breakup effect is 

small and decreases average bubble sizes mostly near the wall.    

Figure 16 and 17 display the comparison of the effects in case 3. The coalescence 

effect is dominant compared to other effects due to the higher gas fraction (α ≅ 27%). 

The computed results with collision and coalescence roughly match the measurements at 

Z=53.5D. The total increase of Sauter mean diameters from Z=6D to Z=53.5D of 30.0% 

consisted of 20.6% from coalescence and 10.9% by expansion. Decrease of the Sauter 

mean diameter by breakup was negligible. From the comparison with case 2, while the 

volumetric expansion effect is determined mostly by height (both absolute height and 
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height difference) and initial bubble size, the coalescence effect depends greatly on local 

flow conditions. 

 

CONCLUSIONS 

A new hybrid EEDPM model for gas-liquid multiphase flow in gas-liquid systems 

has been developed and is tested for three cases of upward bubbly flow. The EEDPM 

model gives improved results compared to the EE model with a constant bubble size in 

both the bubbly flow regime (case 1 & 2) and the transition regime (case 3). This is due to 

improved calculation of the local bubble size distribution, which evolves dynamically 

space and time by coalescence, breakup and volumetric expansion, using a modified lift 

force relation and coalescence efficiency of 0.01. Further work is needed to improve the 

internal models for lift force and coalescence efficiency. The parametric studies of bubble 

interactions and volumetric expansion in case 2 and 3 show that the coalescence effect is 

larger than other effects, and the importance is dependent on the flow conditions such 

as the gas fraction.  
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NOMENCLATURE 
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  ஽ drag coefficientܥ

  ௅ lift coefficientܥ

 ௐ௅ wall lubrication coefficientܥ

  ஽ turbulent dispersion coefficient்ܥ

 ఓ,௟ empirical constant of turbulence modelܥ

D pipe diameter, m 

݀ bubble diameter, m 

݀̅ଷଶ Sauter mean diameter, m 

Eo Eotvos number 

 force, N ࡲ

gravity acceleration, m/sଶ ࢍ   

ℎ௜ initial film thickness, m 

ℎ௙ final film thickness, m 

 ௞௤ momentum transfer coefficient from phase k to qܭ

݇ turbulent kinetic energy, mଶ/sଶ 

݉௕ mass of bubble, kg 

 unit normal wall vector ࢃ࢔

݊ఒሶ  number density of turbulent eddy, 1/mଷ 

 pressure, Pa ݌
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ܴ a uniform probability density function that varies from 0 to 1 

F cumulative probability density function 

r radial position in a pipe, m  

Re୔ particle Reynolds number 

 Time, s ݐ

࢛ velocity field, m/s 

 velocity magnitude, m/s ݑ

 തఒ turbulent eddy velocity, m/sݑ

 i-th DPM bubble velocity, m/s ࢏࢜

V volume, mଷ 

࢞ DPM bubble position, m  

 ௪ distance from a wall, mݕ

 volume fraction ߙ

 viscosity, Pas ߤ

 density, kg/mଷ ߩ

 surface tension coefficient, N/m ߪ

 turbulent dissipation rate, mଶ/sଷ ߝ

 turbulent eddy size, m ߣ

 Kormogolov eddy scale, m ߟ
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 gamma function ߁

 parameter of Rosin-Rammler distribution ߜ

 angular position in a pipe ߆

SUBSCRIPTS 
 buoyancy ܤ 

b bubble 

c computational cell 

 gravity ܩ

D drag 

di i-th detached bubble 

eq equivalent 

g gas phase 

i i-th DPM bubble 

L lift 

l liquid phase 

max maximum 

min minimum 

new new position 

old old position 
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P pressure gradient 

T turbulent dispersion 

t turbulence 

V virtual mass 

W wall lubrication 

 turbulent eddy ߣ

1 a smaller bubble in a pair 

2 a larger bubble in a pair 
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Figure 1 
Fig. 1 Lift coefficient of Tomiyama model and a modified model 
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Figure 2 
 

Fig. 2 Comparison of velocity, gas fraction and bubble size profiles at Z=53.5D 
between measurements and EE simulation of case 1 
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Figure 3 
 

Fig. 3 Comparison of velocity, gas fraction and bubble size profiles at Z=53.5D 
between measurements and EE simulation of case 2  
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Figure 4 
 
 

Fig. 4 Comparison of velocity, gas fraction and bubble size profiles at Z=53.5D 
between measurements and EE simulation of case 3 
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Figure 5 
 

Fig. 5 Comparison of velocity, gas fraction and bubble size profiles at Z=53.5D 
for EE simulation of case 3 with Tomiyama lift 
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Figure 6 
 

Fig. 6 Comparison of velocity, gas fraction and bubble size profile at Z=53.5D for 
EE simulation of case 3 with modified lift 
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Figure 7 
Fig. 7 Coalescence of bubbles naer the center of the pipe 
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Figure 8 
Fig. 8 Breakup of bubbles naer the wall 
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Figure 9 
Fig. 9 DPM bubble distributions of case 2(left) and case 3(right) near Z=53.5D 
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Figure 10 
 

Fig. 10 Profiles of Sauter-mean diameter (case 2) of DPM bubbles from EEDPM at 
Z=6D, Z=53.5D and vertical integration, compared with measurements 

 
 
 
 
 
 
 
 
 
 



CCC Report 2017-02 

38 
 

 
 

Figure 11 
 

Fig. 11 Velocity and gas fraction profiles (case 2) from EEDPM at Z=53.5D and 
comparisons with measurements 
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Figure 12 
Fig. 12 Profiles of Sauter-mean diameter (case 3) of DPM bubbles from EEDPM at 

Z=6D, Z=53.5D and vertical integration, compared with measurements 
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Figure 13 
Fig. 13 Velocity and gas fraction profiles (case 3) from EEDPM at Z=53.5D and 

comparisons with the measurements 
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Figure 14 
Fig. 14 Comparison of DPM bubble sizes from EEDPM at Z=53.5D about run 1~3 

for case 2 
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Figure 15 
 

Fig. 15 Comparison of DPM bubble sizes from EEDPM at Z=53.5D about run 4~6 
for case 2 
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Figure 16 
 

Fig. 16 Comparison of DPM bubble sizes from EEDPM at Z=53.5D about run 1~3 
for case 3 
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Figure 17 
 

Fig. 17 Comparison of DPM bubble sizes from EEDPM at Z=53.5D about run 4~6 
for case 3 
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Table 1 
Table 1 Experimental conditions used in the simulation 

 
 

Operating 
condition 

Case 1 Case 2 Case 3 

Water superficial 
velocity 

0.491 m/s 0.986 m/s 0.986 m/s 

Air superficial 
velocity 

0.030 m/s 0.070 m/s 0.445 m/s 

Gas fraction 4.14 % 5.75 % 26.96 % 
Water velocity at 

inlet 
0.512 m/s 1.046 m/s 1.350 m/s 

Air velocity at inlet 0.734 m/s 1.217 m/s 1.650 m/s 
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Table 2 
 

Table 2 The activated effects in each case of the parametric study 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 collision expansion coalescence breakup 
Run 1 Yes No No No 
Run 2 Yes Yes No No 
Run 3 Yes No Yes No 
Run 4 Yes No No Yes 
Run 5 Yes Yes No Yes 
Run 6 Yes Yes Yes Yes 


